
Journal of Technology Innovation and Engineering (JTIE) ISSN 3058-9584 Vol.1 No.1 January 2025

Comparative Analysis of Interpretability of Simple
and Complex Machine Learning Models in

Presence of Noise

Tong Zhen Hao

Huazhong University of Science and Technology

Abstract：This paper offers a comprehensive analysis of the interpretability of key Machine Learning

models, including ElasticNet regression, Random Forest, and Neural Networks, when faced with

various types of noise. Focusing on both synthetic and real-world datasets of diverse sizes (385 to

15,000 samples), the study probes the models' ability to detect hidden patterns, especially in the

presence of varied noise conditions (Gaussian, Perlin, and Simplex). Through systematic evaluation

using Permutation Feature Importance (PFI) and SHAP summary plots, our research reveals a strong

correlation between dataset size and model robustness to noise perturbations. The results demonstrate

that larger datasets consistently lead to more stable feature importance rankings and better preservation

of model interpretability under noise conditions. While ElasticNet shows superior performance on

larger datasets, Neural Networks prove most sensitive to noise, particularly with smaller datasets. The

findings provide valuable insights for practical applications of machine learning, suggesting that

emphasis should be placed on acquiring larger training datasets to ensure robust and trustworthy model

interpretations in noisy environments. This work contributes to the broader understanding of ML model

interpretability and provides guidance for model selection in real-world applications where data noise

is inevitable.
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1.Introduction
Machine Learning (ML), as a part of

artificial intelligence, focuses on creating

algorithms that help computers learn from data.

This learning imitates human patterns to refine

predictions or decisions by the ML model [1]. ML

is vital in data science, helping to draw insights

from large datasets using statistical and

computational methods [2]. These insights from

data mining guide decision-making, expanding

the use of ML [3].

Understanding the trustworthiness and

interpretability of models, especially in noisy

environments, has become increasingly crucial.

Interpretable ML extracts key knowledge from

models about data relationships, offering

insights for specific audiences on chosen issues,

guiding actions, and is displayed as visuals,

language, or equations based on context. Recent

research has focused extensively on explainable

AI, with some studies providing comprehensive

overviews of interpretation methods, particularly



Journal of Technology Innovation and Engineering (JTIE) ISSN 3058-9584 Vol.1 No.1 January 2025

emphasizing post hoc deep learning

interpretations[4,5]. Other research evaluates

interpretation qualities[6-8], while some explore

method similarities[9,10]. The field has also

become central to discussions about ML bias and

fairness [11-13].

However, a significant gap exists in

understanding how different ML models

maintain their interpretability and

trustworthiness when faced with various types of

noise. While traditional evaluation metrics

provide quantitative measures of model

performance, they fail to capture the nuanced

ways in which noise affects a model's

decision-making process.This research aims to

analyze and compare the interpretability of three

notable ML models: ElasticNet regression,

Random Forest, and Neural Networks,

particularly in the presence of noise. By utilizing

both synthetic and real-world datasets, the study

examines the capacity of these models to

identify hidden patterns under various noise

conditions. The central concern revolves around

assessing the precision and trustworthiness of

these models when their interpretability is

challenged by noise.

Specifically, this study focuses on three

objectives: Examining how different noise

patterns affect model interpretability across

varying dataset sizes. Understanding the

relationship between dataset complexity and

model robustness to noise. Evaluating which

models maintain better interpretability under

noisy conditions. The findings from this research

have significant implications for both theoretical

understanding and practical applications of ML,

particularly in domains where both accuracy and

interpretability are crucial, such as healthcare,

finance, and industrial applications.

2. Related Work

2.1 Machine Learning

Machine Learning (ML) is a part of

artificial intelligence focusing on creating

algorithms that help computers learn from data.

This learning imitates human patterns to refine

predictions or decisions by the ML model. ML is

vital in data science, helping to draw insights

from large datasets using statistical and

computational methods.

2.2 Regression Algorithms and Model
Selection

Regression algorithms help uncover

relationships between an outcome and its

features. Linear regression assumes a

straight-line relationship between variables - its

simplicity makes it efficient, but it may not fit

non-linear data. Regularization techniques like

Lasso and Ridge help prevent overfitting. The

Random Forest algorithm[14] uses ensemble

learning[15] to combine classifiers, boosting

model robustness and accuracy. Neural

Networks are models mimicking biological

neural systems, used to understand complex data

patterns.

2.3 Machine Learning Interpretability

Interpretable ML extracts key knowledge

from models about data relationships. Recent

research has focused extensively on explainable

AI, with some studies providing comprehensive

overviews of interpretation methods, particularly

emphasizing post hoc deep learning

interpretations. Other research evaluates

interpretation qualities while some explore

method similarities. The field has also become

central to discussions about ML bias and
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fairness.

2.4 Effects of Noise on Model Performance

Limited research has been conducted on

how different noise patterns affect model

interpretability and performance. While

traditional evaluation metrics provide

quantitative measures of model performance,

they fail to capture the nuanced ways in which

noise affects a model's decision-making process.

The relationship between dataset size, model

complexity, and noise resilience remains an

understudied area that this research aims to

address.

3.Methodology

3.1 Noise Pattern Design

To comprehensively evaluate model

interpretability under different disturbance

conditions, three distinct noise patterns were

systematically introduced. The “level” (low,

medium, high) relates to the magnitude or

intensity of the noise in relation to the original

data's spread.

3.1.1 Gaussian Noise

For the “low”level noise implementation,

Gaussian noise was selected due to its

well-defined statistical properties. The

probability density function (PDF) of the

Gaussian distribution is defined as:

(1)

In our experimental setup, we introduced

Gaussian noise with μ = 1 and σ proportional to

the original feature's variability. Figure 1

illustrates the distribution changes in the

Random dataset's top five features after

introducing Gaussian noise.

Fig. 8: Perturbation of the five paramount

features in the Random dataset using Gaussian

noise. Post perturbation, discernible alterations

in the central tendencies and dispersions (µ and

σ) of the features are evident.

3.1.2 Perlin Noise

The “medium” level noise employs Perlin

noise[16], a gradient noise function that provides

continuous, smooth variations across its domain.

The implementation follows a three-step

process:

Grid Creation: Establishing a grid of

random gradient vectors；

Dot Product: Computing dot products

between distance and gradient vectors；

Interpolation: Smooth interpolation

between calculated values.

The Perlin noise function can be

mathematically represented as:

(2)

Where n is set to 100 octaves, ai represents

the amplitude, and bi denotes the frequency for

the ith octave. Figure 2 demonstrates the effects

of Perlin noise on the Random dataset's features.
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Fig. 2: Influence of Perlin noise on the

predominant five features of the Random

dataset.

3.1.3 Simplex Noise

For the “high” level noise, Simplex noise

was implemented as an n-dimensional noise

function. The space is divided into simplexes

(triangles in 2D, tetrahedra in 3D), with each

vertex associated with a gradient. The noise

value computation involves: Computing dot

products between position vectors and gradients;

Interpolating across the simplex structure;

Combining multiple octaves for the final noise

value.The comparative effects of all three noise

patterns are visualized in Figure 3, showing their

impact on feature distributions.

Fig. 3: Influence of Simplex noise on the
predominant five features of the Random

dataset.

3.2 Datasets

In order to conduct a comparative analysis

of the robustness of ML interpretability, this

study employs three distinct datasets of varying

sizes, each applied to a regression problem.

These datasets have been chosen to represent a

range of scenarios, from small-scale to

large-scale data. Detailed information about each

dataset is provided in Table 1.
Table 1: Datasets comparison.

3.2.1 Elongation Dataset

The Elongation dataset, originating from

the metallurgical foundry domain, encompasses

385 observations with 17 predictor variables

representing the chemical constituents of a

distinct steel alloy (like C, Si, Mn, P, S, Cu, Mg,

etc.). The dependent variable, designated as

"Elong", quantifies the extent of elongation for

the specific steel type.

Feature correlation analysis (Figure 4)

reveals that 'C' positively correlates with 'SI',

while negatively correlating with 'MG'. The

target 'Elong' exhibits varied correlations with

features, particularly negative correlations with

'C' and 'SI'. Most features show minimal

inter-correlation.

Name
Number

of
instances

Number
of

features

Target
name

Doma
in

Elonga
tion

385 17 Elong Steel

Rando
m

5000 10 label
Synth
etic

Chemi
cal

15000 15 D
Chem
ical
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Fig. 4: Correlation matrix of the features in the

elongation dataset

For evaluating model trustworthiness, five

pivotal determinants were identified based on

domain expertise: “PB”,“SI”, “P”, “AL”, and

“MO”. The relationship was defined as:

3.2.2 Random Dataset

Using Scikit-learn [17], a synthetic dataset

was generated with 5,000 samples and 10

features, of which 5 are informative. The

make_regression method was employed to create

this controlled environment. Correlation analysis

(Figure 5) shows most features have low to

moderate correlations, indicating limited

multicollinearity. The target 'label' demonstrates

strong correlations with specific features while

maintaining weak associations with others.

Fig. 5: Correlation matrix of the features
in the random dataset.

3.2.3 Chemical Dataset

The Chemical dataset comprises 15 features,

labeled as 'I1' through 'I15', representing specific

chemical properties or measurements relevant to

the industry. The target variable 'D' represents a

specific outcome property. Correlation analysis

(Figure 18) shows low to moderate correlations

between features, with the target 'D' showing

notable correlations with 'I1', 'I5', and 'I14'.

To examine the machine learning's ability

to find hidden patterns, a non-linear relationship

between top 5 features and the label was

explicitly defined as:

This diverse dataset selection allows for a

comprehensive evaluation of model

interpretability across different scales and

domains, providing insights into how dataset

characteristics influence model robustness under

noise conditions.

3.3 Model Training and Hyperparameter
Settings

Hyperparameters in ML algorithms

significantly influence the performance and

predictive accuracy of models. These parameters,

which are set prior to the commencement of the

learning process, govern the behavior of the

algorithms. In this study, Bayesian optimization

was selected as the hyperparameter tuning

method due to its efficiency and ability to handle

high-dimensional parameter spaces [18-22].

3.3.1 Hyperparameter Search Space

The dimensionality and configuration of the

search space for Bayesian optimization are

contingent upon the dataset size, as detailed in

Tables 2-4.



Journal of Technology Innovation and Engineering (JTIE) ISSN 3058-9584 Vol.1 No.1 January 2025

Table 2: Hyperparameter search spaces for ElasticNet on different datasets.

Dataset α I1_ratio max_iter

Elongation (0.001, ..., 10) (0.1, ..., 1.0) (100, ..., 500)

Random (0.001, ..., 10) (0.1, ..., 1.0) (100, ..., 800)

Chemical (0.001, ..., 10) (0.1, ..., 1.0) (100, ..., 1000)

Table 3: Hyperparameter search spaces for Random Forest on different datasets.

Table 4: Hyperparameter search spaces for Neural Networks on different datasets.

3.3.2 Optimization Settings

The training data was preprocessed using

StandardScaler to ensure feature

standardization :z = (x - μ)/σ

Where μ denotes the mean of training

samples, and σ represents the standard

deviation. The optimization process followed

specific settings for each model type, as

shown in Table 5.

Table 5: Bayesian optimization settings.

Algorithm Cross-validation folds Iterations

ElasticNet 5 20
Random Forest 3 20
Neural Network 5 10

3.4 Model Trustworthiness

This dissertation focuses on global

interpretability, which aims to provide an overall

understanding of the model across all instances.

PFI plot and the SHAP summary plot are utilized

to assess model

interpretability under noise conditions. The PFI

plot offers a measure of the importance of

each feature by observing the increase in the

model's prediction error after permuting the

feature's values. This allows for an

understanding of the overall impact of each

feature on the model's predictions.

Dataset n_estimators max_depth min_sample_split criterion

Elongation (50, ..., 200) (3, ..., 20) (2, ..., 10) squared_error

Random (50, ..., 1000) (3, ..., 30) (2, ..., 20) squared_error

Chemical (50, ..., 1000) (3, ..., 30) (2, ..., 20) absolute_error

Dataset number_layers number_neurons dropout_rate learning_rate

Elongation (1, 2, 3) (10, ..., 200) (0.1, ..., 0.5) (0.001, ..., 0.1)

Random (1, 2, 3) (10, ..., 300) (0.1, ..., 0.5) (0.001, ..., 0.1)

Chemical (1, 2, 3) (10, ..., 500) (0.1, ..., 0.5) (0.001, ..., 0.1)
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Conversely, the SHAP summary plot

provides a bird's eye view of the model by

displaying the impact of all features on the

model's output for every instance in the dataset.

The SHAP summary plot amalgamates feature

importance with feature effects. Each point on

the summary plot represents a Shapley value for

a feature and an instance. The color gradient

signifies the value of the feature, ranging from

low to high, with features arranged in order of

their importance.

A marked disparity in the order or

significance of features, as discerned from these

plots before and after the introduction of noise to

the dataset, can be indicative of the model's

susceptibility to random perturbations. Such a

behavior may cast doubt on the model's

reliability and suggest potential overfitting or

sensitivity to irrelevant features. Conversely, if

the perturbations, in the form of noise, yield

minimal to no alterations in the derived feature

importance, it can be posited that the model

possesses a commendable degree of robustness

and can be deemed trustworthy in its predictive

capacity.

4.Results

4.1 Elongation Dataset

4.1.1 Model Performance

In the context of the elongation dataset,

hyperparameters described in Tables 6 through 8

have been used for model validation on the

corresponding test dataset. The performance

outcomes across different noise conditions are

shown in Table 9.
Table 9: Elongation dataset model performances (R²)

Algorithm Noise-free Gaussian Perlin Simplex

ElasticNet 0.58 0.4 0.39 0.36

Random Forest 0.63 0.46 0.48 0.55

Neural Network 0.49 0.07 0.33 0.43

From Table 9, several key observations can

be made:All algorithms experience a decrease in

performance with noise introduction. The Neural

Network is severely impacted by Gaussian noise,

with its R² dropping dramatically from 0.49 to

0.07. Random Forest demonstrates the most

stable performance across different noise

patterns. ElasticNet shows consistent

degradation as noise complexity increases.

4.1.2 Global Interpretability

Feature importance analysis reveals

significant changes in model interpretability

under noise conditions. For the ElasticNet model,

initial analysis in the absence of noise highlights

“Pb”, “Si”, “Al”, “P”, and “C” as the important

features (Figure 6). However, after noise

incorporation, there is a perceptible alteration in

the hierarchy of feature importance.

Fig. 6: Distribution of feature weights as
determined from domain expertise for the
elongation dataset.
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The PFI plots (Figures 7-9) demonstrate

that:ElasticNet model's feature importance

rankings become unstable under all noise types.

Random Forest shows significant changes in

feature importance hierarchy. Neural Network

exhibits the most dramatic shifts in feature

importance patterns.

Fig. 7: PFI plot for elongation dataset of
ElasticNet model. From top left to bottom right
is: Noise-free, Gaussian, Perlin and Simplex.

Fig. 8: PFI plot for elongation dataset of
Random Forest model. From top left to
bottom right is: Noise-free, Gaussian, Perlin
and Simplex.
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Fig. 9: PFI plot for elongation dataset of Neural
Network model. From top left to bottom right is:

Noise-free, Gaussian, Perlin and Simplex.

SHAP summary plots (Figures 10-12)

further confirm these findings, showing that:All

three algorithms change their order of feature

importance after noise introduction. The feature

importance rankings become inconsistent with

the original domain knowledge-based pattern.

The models fail to maintain stable feature

attribution patterns under noise conditions.

Fig. 10: SHAP summary plot for elongation
dataset of ElasticNet model. From top left to

bottom right is: Noise-free, Gaussian, Perlin and
Simplex

Fig. 11: SHAP summary plot for elongation
dataset of Random Forest model. From top left
to bottom right is: Noise-free, Gaussian, Perlin

and Simplex
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Fig. 12: SHAP summary for elongation dataset
of Neural Network model. From top left to

bottom right is: Noise-free, Gaussian, Perlin and
Simplex.

4.1.3 Model Trustworthiness

For the elongation dataset (385 samples),

upon the introduction of three distinct levels of

noise, the model's efficacy markedly deteriorated.

Both the PFI plots and SHAP summary plots

show that, irrespective of the noise

type—whether “low” level Gaussian or “high”

level Simplex—the machine learning models

failed to discern the underlying patterns robustly.

This implies that for this relatively small dataset,

the models, under the influence of these noise

perturbations, are not reliable.

The exogenous noise significantly impairs

both the performance and interpretability of the

models, suggesting that smaller datasets may be

more susceptible to noise-induced degradation in

both predictive accuracy and interpretability.

4.2 Random Dataset

4.2.1 Model Performance

In the analysis of the random dataset,

variations in noise patterns were systematically

introduced to the raw data. The performance

metrics for each model under different noise

conditions are presented in Table 10
Table 10: Random dataset model performances (R²).

Key observations from Table 10 include:

The ElasticNet model exhibits superior

performance under noise-free conditions (R² =

1.0). All models demonstrate higher resilience to

noise compared to the Elongation dataset.

Performance degradation is less severe across all

noise types. Random Forest shows remarkable

stability with minimal performance variation

4.2.2 Global Interpretability

Both PFI and SHAP summary plots were

used on the pristine, noise-free training dataset

to discern the five paramount features (Figure

13). In Figure 24, the SHAP summary plot for

the Random Forest model demonstrates

remarkable stability - the feature importance

rankings remain consistent before and after noise

introduction.

Algorithm Noise-free Gaussian Perlin Simplex

ElasticNet 1 0.97 0.94 0.9

Random Forest 0.92 0.91 0.89 0.91

Neural Network 0.96 0.92 0.91 0.91
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Fig. 13: Coefficient magnitudes of the quintet of informative features within the random dataset.

The evidence of model stability is further
supported by:PFI plots (Figures 14-16) showing
consistent feature importance rankings across all
noise levels. SHAP summary plots (Figures 17)
maintaining stable feature attribution patterns.
Clear preservation of the original feature
importance hierarchy despite noise

perturbations.

Fig. 14: PFI plot for random dataset of
ElasticNet model. From top left to bottom right
is: Noise-free, Gaussian, Perlin and Simplex.

Fig. 15: PFI plot for random dataset of Random
Forest model. From top left to bottom right is:
Noise-free, Gaussian, Perlin and Simplex.

Fig. 16: PFI plot for random dataset of Neural
Network model. From top left to bottom right is:

Noise-free, Gaussian, Perlin and Simplex.
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Fig. 17: SHAP summary plot for random dataset
of ElasticNet model. From top left to bottom
right is: Noise-free, Gaussian, Perlin and

Simplex.

4.2.3 Model Trustworthiness

In the constructed random dataset (5,000

samples), five features were explicitly designed

as informative. The introduction of varying noise

levels significantly influences the resultant

performance metrics of predictive models. An

examination of both the PFI plots and SHAP

summary diagrams reveals that each model

adeptly identifies the inherent patterns of the

dataset, preserving the original feature

importance hierarchy across all noise conditions.

Based on the PFI plots and SHAP summary

plots, it can be observed that all three models

maintain consistent performance and

interpretability under various noise conditions.

ElasticNet shows minimal performance

degradation from 1.0 to 0.90 even under the

most severe noise, while Random Forest and

Neural Network demonstrate robust stability

with R² values consistently above 0.90. This

enhanced stability, compared to the Elongation

dataset, suggests that the larger dataset size

contributes to improved model robustness

against noise perturbations.

So it can be concluded that, for random

dataset, all three models can be trusted. This

conclusion is supported by their ability to

maintain both performance metrics and

interpretability under various noise conditions,

while consistently identifying the designed

important features regardless of noise level.

4.3 Chemical Dataset

4.3.1 Model Performance

In the analysis of the chemical dataset, for

the noise-free scenario, ElasticNet achieved

perfect performance with an R² of 1.0,

outperforming both Random Forest and Neural

Network. However, as noise types like Gaussian,

Perlin and Simplex are introduced, all models

exhibit a decrease in R², with ElasticNet still

tending to outperform the other models. Notably,

Neural Network consistently has the lowest R²

across all noise types, as shown in Table 11.
Table 11: Chemical dataset model

performances (R²).

Algorithm
Noise
-free

Gauss
ian

Perlin
Simple
x

ElasticNet 1 0.96 0.93 0.94

Random
Forest

0.94 0.92 0.91 0.91

Neural
Network

0.86 0.82 0.84 0.83

4.3.2 Global Interpretability

In Figure 25, the SHAP summary plots

pertaining to the Neural Network model applied

to the chemical dataset are illustrated. It is

noteworthy that the feature significance remains

invariant for the Neural Network model, both

pre and post the introduction of noise to the

principal five features. Subsequent PFI

visualizations and SHAP summary plots are

shown from Figure 33 through Figure 37.

Consistently across these representations, the

hierarchy of feature relevance remains unaltered,

underscoring that, for the chemical dataset, all

models adeptly discern the intrinsic data

patterns.

4.3.3 Model Trustworthiness

Upon juxtaposing the feature importance

rankings across three distinct machine learning

models, under the influence of varying noise

intensities, the order remains invariant.
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Pertaining to the chemical dataset (15,000

samples), all models adeptly discern the

underlying data patterns and yield coherent

interpretations.

When examining both the PFI plots and

SHAP summary plots before and after noise

introduction, we observe that: The hierarchy of

feature importance remains consistent across all

noise types. All three models maintain stable

feature importance rankings. The top five

features (I1, I2, I3, I4, I5) retain their relative

positions regardless of noise level.

Within the context of the chemical dataset,

each model exhibits reliability and robustness,

demonstrating strong noise resilience in both

performance metrics and interpretability

measures. This enhanced stability, observed in

this larger dataset, further supports the

relationship between dataset size and model

robustness to noise perturbations.

5.Conclusions

5.1 Summary

The comparative analysis across three

datasets of varying sizes has revealed several

key insights about machine learning model

interpretability under noisy conditions. Our

findings demonstrate a clear relationship

between dataset size and model robustness to

noise perturbations.

For the Elongation dataset (385 samples),

all three models showed significant vulnerability

to noise interference. The Neural Network

proved particularly susceptible, with its R²

dropping from 0.49 to 0.07 under Gaussian noise.

More critically, both PFI and SHAP summary

plots revealed that the models failed to maintain

consistent feature importance rankings under

noise conditions, indicating poor interpretability

preservation.

In contrast, the Random dataset (5,000

samples) demonstrated markedly improved

resilience. All models maintained high

performance metrics even under noise conditions,

with ElasticNet showing particularly strong

results (R² = 0.97 under Gaussian noise). The

feature importance hierarchies remained stable

across all noise types, suggesting robust

interpretability.

The Chemical dataset (15,000 samples)

further confirmed this trend, with models

showing strong resistance to noise perturbations.

ElasticNet achieved perfect performance (R² =

1.0) in noise-free conditions and maintained high

performance (R² > 0.90) even under complex

noise patterns. Importantly, the feature

importance rankings remained consistent across

all noise conditions, demonstrating reliable

interpretability.

Key findings from this research include:

Dataset Size Impact: Larger datasets

consistently led to more robust model

interpretability under noise conditions.

Model Behavior: ElasticNet showed

superior performance in larger datasets. Random

Forest demonstrated consistent stability across

different dataset sizes. Neural Networks proved

most sensitive to noise, particularly in smaller

datasets

Noise Effects: Gaussian noise generally had

t.he least impact on model interpretability.

Complex noise patterns (Perlin and Simplex)

showed stronger effects on smaller datasets.

Larger datasets maintained interpretability even

under high-level noise.

These findings have significant

implications for practical applications of
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machine learning, particularly in domains where

both accuracy and interpretability are crucial.

They suggest that when working with noisy data,

emphasis should be placed on acquiring larger

training datasets to ensure robust and

trustworthy model interpretations.

5.2 Future Work

The findings from this project pave the

way for several exciting research opportunities.

One potential direction is the exploration of

other ML algorithms, such as XGBoost and

LightGBM beyond ElasticNet regression,

Random Forest, and Neural Networks. This

could broaden the understanding of

interpretability and noise trustfulness across a

more diverse range of ML models.

Furthermore, the influence of diverse

noise patterns on model interpretability and

efficacy warrants deeper exploration. This

study scrutinized the effects of Gaussian,

Perlin, and Simplex noise, yet future

investigations could expand to encompass

other noise varieties, such as value noise and

worley noise , to provide a more

comprehensive understanding.

The project could also be expanded to

encompass larger datasets and more complex

models. This would allow for a deeper

exploration of the interplay between dataset

size, model complexity, and interpretability.

Furthermore, future research could focus on

enhancing the noise trustfulness of ML models.

This could involve the exploration of different

training methods, regularization techniques, or

model architectures that could improve a

model's ability to handle noise.
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