基于差分进化算法的分数阶灰色动力学模型及其对中国 煤炭消费的预测研究

李嘉仪

重庆师范大学 重庆 401331

摘要:本文以煤炭消费量为研究对象,以煤炭消费、碳排放、人口和经济增长的微分动力方程为基础,结合微分 方程和差分方程的差异性信息原理,构建煤炭消费量的非线性灰色多变量预测模型,引入分数阶累加算子挖掘历 史数据中的趋势信息,差分进化算法优化分数阶自适应阶数,并求解了模型的参数和时间响应函数。为了验证模 型的有效性,以中国 2000 年—2023 年的煤炭消费量数据为基础做向前三步预测,系统评估了模型模拟和预测的 稳定性。最后,将模型应用于中国的煤炭消费量的预测分析,结果表明,未来三年我国煤炭消费量呈波动上升的 趋势,相关结论可为相关能源政策的制定提供有效的量化参考。

关键词:煤炭消费;微分动力系统;灰色预测模型

DOI: 10.63887/fet.2025.1.4.5

1. 引言

在国家"双碳"目标引领下,能源结构的绿色转 型迫在眉睫^[1]。煤炭在我国能源结构中占据主导地位, 是国民经济发展的重要支撑,科学预测煤炭消费量的 未来走势,对制定能源发展战略、有序推进减排工作 具有重要的现实意义。

煤炭消费受多种因素交互影响,构成了一个复杂 的非线性系统。针对此类"小样本、贫信息"的不确 定性问题,灰色预测模型展现出独特优势^[2]。为提升预 测精度,学者们对传统灰色模型进行了诸多改进。针 对传统的单变量 GM(1,1) 模型难以应对能源系统的复 杂动态的问题,为体现外部因素的驱动作用,学者们 将模型拓展为包含多个驱动因素的灰色多变量模型^[3]; 为捕捉系统的非线性变化特征,学者们通过引入伯努 利参数、时间幂次项等方式,构建了多种非线性灰色 预测模型^[4];为更灵活地挖掘数据序列的内在规律,分 数阶累加算子也被引入模型中, 它突破了传统一阶累 加算子整数阶累加的限制,提升了模型的适应性^[5];此 外,为提高参数求解的精度,模拟退火、粒子群优化 等智能算法被广泛用于模型超参数的优化⁶⁶。然而,现 有灰色预测模型多聚焦于数据拟合技巧的创新,对系 统内各要素间相互作用的内在机理刻画不足,导致模 型可解释性较弱^[7]。另一方面,虽然微分动力系统模型 能够分析系统内在动态演化趋势,但模型缺乏从新数 据中快速学习和适应未知变化的能力,且遭遇外部冲 击时,模型难以应外部冲击,预测性能显著下降^[8]。在 此情况下,发展一个融合两类方法优势的预测新范式, 成为该领域亟待探索的方向。

鉴于此,本文基于煤炭消费、碳排放、人口与 GDP 的间的动态演化关系,构建了煤炭消费量的微分方程, 根据微分方程和差分方程的差异性信息原理,构建了 分数阶非线性灰色多变量预测模型,求解模型的参数 和时间响应函数,并采用差分进化算法对模型中的分 数阶阶数进行寻优。本文以中国 2000 年—2023 年的煤 炭消费量数据为基础验证了该模型的有效性,并预测 了未来 3 年中国煤炭消费量,为"双碳"背景下的煤 炭消费总量控制提供了量化参考。

2. 煤炭消费量的灰色多变量模型

煤炭消费系统是一个复杂的非线性系统,其中, 煤炭排放量和煤炭消费量受到人口、经济增长等因素 的影响。为定量描述上述动态演化关系,田立新¹⁹¹等人 建立如下微分方程:

$$\begin{cases} \frac{dx}{dt} = \varepsilon_1 x + \varepsilon_2 p x + \varepsilon_3 g x \\ \frac{dy}{dt} = \sigma_1 y + \sigma_2 p y + \sigma_3 x y \end{cases}$$
(1)

其中, *x*表示煤炭消耗总量; *y*表示中国的碳排 放量; *p*表示人口; *g*表示国内生产总值(GDP); ε₁表 示煤炭消耗自身的增长率; ε_2 表示人口对煤炭消耗的 控制机制的影响因子; ε_3 表示经济发展对煤炭消耗的 影响因子; σ_1 表示碳排放自身的增长率; σ_2 表示通过 人们逐渐增长的环保意识而导致的碳排放控制; σ_3 表 示煤炭消耗对碳排放产生的影响。

将式(1)两端相加可以得到:

 $\begin{aligned} \frac{dx}{dt} + \frac{dy}{dt} &= \varepsilon_1 x + \varepsilon_2 p x + \varepsilon_3 g x^+ \sigma_1 y + \sigma_2 p y + \sigma_3 x y \end{aligned}$ (2) 令 $\varepsilon_1 &= u_1$, $\varepsilon_2 &= u_2$, $\varepsilon_3 &= u_3$, $\sigma_1 &= u_4$, $\sigma_2 &= u_5$, $\sigma_3 &= u_6$, $u_1, u_2, u_3, u_4, u_5, u_6$ 为常数, 可以得到 $\frac{dx}{dt} + \frac{dy}{dt} &= u_1 x + u_2 p x + u_3 g x + u_4 y + u_5 p y + u_6 x y \end{aligned}$ (3) 则称式 (3) 为煤炭消费系统的微分方程。

2.1 煤炭消费量的灰色预测模型

设 X⁽⁰⁾ 为煤炭消费量的原始序列, X⁽⁰⁾ = (x⁽⁰⁾(1),x⁽⁰⁾(2),...x⁽⁰⁾(n)), X^(r_i) 为 X⁽⁰⁾ 的 r_x 阶累加生成序列, X^(r_i) = (x^(r_i)(1),x^(r_i)(2),...x^(r_i)(n)), 其中 x^(r_i)(k) = $\sum_{i=1}^{k} \frac{\Gamma(r_x + k - i)}{\Gamma(k - i + 1)\Gamma(r_x)} x^{(0)}(k)$, k = 1, 2, ...n. 类似地, 定义了煤炭排放量, 人口和 GDP 的原始序列和分数阶累加生成序列: Y⁽⁰⁾ = (y⁽⁰⁾(1),y⁽⁰⁾(2),...y⁽⁰⁾(n)), Y^(r_j) = (y^(r_j)(1),y^(r_j)(2),...y^(r_j)(n)), y^(r_j)(k) = $\sum_{i=1}^{k} \frac{\Gamma(r_y + k - i)}{\Gamma(k - i + 1)\Gamma(r_y)} y^{(0)}(k)$. P⁽⁰⁾ = (p⁽⁰⁾(1),p⁽⁰⁾(2),...p⁽⁰⁾(n)), P^(r_j) = (p^(r_j)(1),p^(r_j)(2),...p^(r_j)(n)), p^(r_j)(k) = $\sum_{i=1}^{k} \frac{\Gamma(r_y + k - i)}{\Gamma(k - i + 1)\Gamma(r_y)} p^{(0)}(k)$. G⁽⁰⁾ = (g⁽⁰⁾(1),g⁽⁰⁾(2),...g⁽⁰⁾(n)), G^(r_i) = (g^(r_i)(1),g^(r_i)(2),...g^(r_i)(n)), g^(r_i)(k) = $\sum_{i=1}^{k} \frac{\Gamma(r_y + k - i)}{\Gamma(k - i + 1)\Gamma(r_y)} p^{(0)}(k)$. But, 式 (3) 可以表示为 $\frac{dx^{(n)}(t)}{dt} + \frac{dy^{(n)}(t)}{dt} = u_i x^{(r_i)}(t) + u_2 p^{(r_j)}(t) x^{(r_i)}(t) + u_3 g^{(r_i)}(t) x^{(r_i)}(t) + u_4 y^{(r_j)}(t) x^{(r_j)}(t) + u_6 x^{(r_i)}(t) y^{(r_j)}(t)$ (4) 根据微分方程和差分方程的差异性信息原理,可对上述方程进行如下处理: $\frac{dx^{(n)}}{dt} \Big|_{r_{ex}} \approx \lim_{x \to 1} \frac{x^{(r_i)}(k) - x^{(r_i)}(k - 1)}{sd} = x^{(r_i)}(k) - x^{(r_i)}(k - 1)}, \frac{dy^{(r_i)}(k)}{sd} = x^{(r_i)} \frac{y^{(r_i)}(k) - y^{(r_i)}(k - 1)}{sd} = y^{(r_i)}(k) - y^{(r_i)}(k - 1)},$

根据上述推导,可以建立以下灰色预测模型:

定义 1: $x^{(r_x)}(k)$, $y^{(r_y)}(k)$, $p^{(r_p)}(k)$, $g^{(r_g)}(k)$ 的定义如前所述,则称

$$x^{(r_{x})}(k) - x^{(r_{x})}(k-1) + y^{(r_{y})}(k) - y^{(r_{y})}(k-1) = u_{1}x^{(r_{x})}(k) + u_{2}p^{(r_{p})}(k)x^{(r_{x})}(k) + u_{3}g^{(r_{y})}(k)x^{(r_{x})}(k) + u_{4}y^{(r_{y})}(k) + u_{5}p^{(r_{p})}(k)y^{(r_{y})}(k) + u_{6}x^{(r_{x})}(k)y^{(r_{y})}(k)$$
(5)

为煤炭消费量的灰色预测模型,简称 CCGM(1,3),式(4)为该模型的白化微分方程。

定理 1: $x^{(r_x)}(k)$, $y^{(r_y)}(k)$, $p^{(r_p)}(k)$, $g^{(r_g)}(k)$ 的定义 如前所述,若给定 $r_i(i = x, y, p, g)$,则 CCGM (1, 3) 模型 的参数估计值为 $\beta = (u_1, u_2, u_3, u_4, u_5, u_6) = (B^T B)^{-1} B^T Y$, 其中:

2.2 求解模型的参数估计值和时间响应函数

x⁽⁰⁾(k)本小节使用最小二乘法计算进行参数估计, 推导了模型的时间响应函数。

$$B = \begin{pmatrix} x^{(r_{x})}(2) & p^{(r_{p})}(2)x^{(r_{x})}(2) & g^{(r_{y})}(2)x^{(r_{x})}(2) & p^{(r_{p})}(2)y^{(r_{y})}(2) & x^{(r_{x})}(2)y^{(r_{y})}(2) \\ x^{(r_{x})}(3) & p^{(r_{p})}(3)x^{(r_{x})}(3) & g^{(r_{y})}(3)x^{(r_{x})}(3) & y^{(r_{y})}(3) & p^{(r_{p})}(3)y^{(r_{y})}(3) & x^{(r_{x})}(3)y^{(r_{y})}(3) \\ \dots & \dots & \dots & \dots & \dots \\ x^{(r_{x})}(n) & p^{(r_{p})}(n)x^{(r_{x})}(n) & g^{(r_{y})}(n)x^{(r_{x})}(n) & y^{(r_{y})}(n) & p^{(r_{p})}(n)y^{(r_{y})}(n) & x^{(r_{x})}(n)y^{(r_{y})}(n) \end{pmatrix},$$

$$Y = \begin{pmatrix} x^{(r_{x})}(2) - x^{(r_{x})}(1) + y^{(r_{y})}(2) - y^{(r_{y})}(1) \\ x^{(r_{x})}(3) - x^{(r_{x})}(2) + y^{(r_{y})}(3) - y^{(r_{y})}(2) \\ \dots & \dots & \dots & \dots \end{pmatrix}$$

$$Y = \begin{bmatrix} ... \\ ... \\ x^{(r_x)}(n) - x^{(r_x)}(n-1) + y^{(r_y)}(n) - y^{(r_y)}(n-1) \end{bmatrix}$$

itin: 把原始数据代入式(5)中,可以得到:

 $x^{(r_{x})}(2) - x^{(r_{x})}(1) + y^{(r_{y})}(2) - y^{(r_{y})}(1) = u_{x}x^{(r_{x})}(2) + u_{2}p^{(r_{p})}(2)x^{(r_{x})}(2) + u_{3}g^{(r_{g})}(2)x^{(r_{x})}(2) + u_{4}y^{(r_{y})}(2) + u_{5}p^{(r_{p})}(2)y^{(r_{y})}(2) + u_{6}x^{(r_{x})}(2)y^{(r_{y})}(2) + u_{6}x^{(r_{y})}(2)y^{(r_{y})}(2) + u_{6}x^{(r_{y})}(2) +$ $x^{(r_{x})}(3) - x^{(r_{x})}(2) + y^{(r_{y})}(3) - y^{(r_{y})}(2) = u_{x}x^{(r_{x})}(3) + u_{2}p^{(r_{p})}(3)x^{(r_{x})}(3) + u_{3}g^{(r_{g})}(3)x^{(r_{x})}(3) + u_{4}y^{(r_{y})}(3) + u_{5}p^{(r_{p})}(3)y^{(r_{y})}(3) + u_{6}x^{(r_{x})}(3)y^{(r_{y})}(3) + u_{6}x^{(r_{x})}(3)y^{(r_{x})}(3) + u_{6}x^{(r_{x})}(3)y^{(r$

 $x^{(r_{x})}(n) - x^{(r_{x})}(n-1) + y^{(r_{y})}(n) - y^{(r_{y})}(n-1) = u_{x}x^{(r_{x})}(n) + u_{y}p^{(r_{p})}(n)x^{(r_{x})}(n) + u_{z}g^{(r_{g})}(n)x^{(r_{x})}(n) + u_{z}y^{(r_{y})}(n) + u_{z}p^{(r_{p})}(n)y^{(r_{y})}(n) + u_{z}x^{(r_{x})}(n)y^{(r_{y})}(n) + u_{z}y^{(r_{y})}(n) + u$ 根据矩阵 B 和 Y 的定义,式(6)的矩阵形式可以表示为: $Y = B\beta$.

(6)

设
$$\sigma = Y - B\beta$$
, 则有 $e = \varepsilon^T \varepsilon = (Y - B\beta)^T (Y - B\beta) = \sum_{k=2}^n (s(k))^2$, 其中

$$s(k) = x^{(r_x)}(k) - x^{(r_x)}(k-1) + y^{(r_y)}(k) - y^{(r_y)}(k-1) - u_1 x^{(r_x)}(k) - u_2 p^{(r_p)}(k) x^{(r_x)}(k) - u_3 g^{(r_g)}(k) x^{(r_x)}(k) - u_4 y^{(r_y)}(k) - u_5 p^{(r_p)}(k) y^{(r_y)}(k) - u_6 x^{(r_x)}(k) y^{(r_y)}(k)$$

模型的参数可以由以下方程组求得:

$$\begin{cases} \frac{\partial e}{\partial u_1} = -2\sum_{k=2}^n x^{(r_x)}(k)s(k) = 0\\ \frac{\partial e}{\partial u_2} = -2\sum_{k=2}^n p^{(r_p)}(k)x^{(r_x)}(k)s(k) = 0\\ \frac{\partial e}{\partial u_3} = -2\sum_{k=2}^n g^{(r_g)}(k)x^{(r_x)}(k)s(k) = 0\\ \frac{\partial e}{\partial u_4} = -2\sum_{k=2}^n y^{(r_y)}(k)s(k) = 0\\ \frac{\partial e}{\partial u_5} = -2\sum_{k=2}^n p^{(r_p)}(k)y^{(r_y)}(k)s(k) = 0\\ \frac{\partial e}{\partial u_6} = -2\sum_{k=2}^n x^{(r_x)}(k)y^{(r_y)}(k)s(k) = 0 \end{cases}$$

因此, $B^T \varepsilon = 0 \Rightarrow B^T (Y - B\beta) = 0 \Rightarrow B^T Y - B^T B\beta = 0 \Rightarrow \beta = (B^T B)^{-1} B^T Y$.

定理 2: $x^{(r_x)}(k)$, $y^{(r_y)}(k)$, $p^{(r_p)}(k)$, $g^{(r_g)}(k)$ 的定义如前所述, 若给定 $r_i(i = x, y, p, g)$, 则 CCGM(1, 3)的 时间响应函数为:

$$x^{(r_x)}(k) = \frac{x^{(0)}(1)}{\prod\limits_{i=2}^{k} A(i)} + \sum\limits_{m=2}^{k} \frac{B(m)}{\prod\limits_{i=m}^{k} A(i)}$$
(7)

其中,

整理得

$$\begin{split} x^{(r_{x})}(k) &= \frac{1}{A(k)} x^{(r_{x})}(k-1) + \frac{B(k)}{A(k)} = \frac{1}{A(k)A(k-1)} x^{(r_{x})}(k-2) + \frac{B(k-1)}{A(k)A(k-1)} + \frac{B(k)}{A(k)} = \frac{1}{A(k)A(k-1)A(k-2)} \bullet x^{(r_{x})}(k-3) \\ &+ \frac{B(k-2)}{A(k)A(k-1)A(k-2)} + \frac{B(k-1)}{A(k)A(k-1)} + \frac{B(k)}{A(k)} = \cdots = \frac{1}{A(k)A(k-1)\cdots A(2)} x^{(0)}(1) + \frac{B(2)}{A(k)A(k-1)\cdots A(2)} + \frac{B(3)}{A(k)\cdots A(3)} \quad \text{if } \\ &+ \cdots \frac{B(k)}{A(k)} = \frac{x^{(0)}(1)}{\prod\limits_{i=2}^{k} A(i)} + \sum_{m=2}^{k} \frac{B(m)}{\prod\limits_{i=m}^{k} A(i)} \\ & \text{ fig if } \hat{x}^{(0)}(k) = (\hat{x}^{(r_{x})})^{(-r_{x})} = \sum_{i=0}^{k-1} (-1)^{i} \frac{\Gamma(r_{x}+1)}{\Gamma(i+1)\Gamma(r_{x}-i+1)} \hat{x}^{(r_{x})}(k-i) \quad k = 2, 3 \cdots n , \quad \hat{x}^{(0)}(1) = x^{(0)}(1) . \end{split}$$

3 实例分析

本文使用中国 2000-2023 年的煤碳消费量与影响 因素的数据进行实例分析。碳消费量,人口和 GDP 的 数据来自于《中国统计年鉴》,碳排放量的数据来自 于美国能源信息署(https://www.eia.gov/).本文选 取 2000-2020 年的数据作为训练集,2021-2023 年的数 据作为测试集,使用差分进化算法优化分数阶阶数, 并验证 CCGM(1,3)模型的有效性。CCGM(1,3)模型的参 数值见表 1, CCGM(1,3)模型和对比模型的拟合预测结 果和效果评价指标见表 2.

表1 模型的参数值									
	参数	r_x		r_y		r_{μ}	,	r_g	
	值	0.23		-0.26		-1.69		3.74	
表2不	同模型的模拟	以预测结果及	误差分析						
te II	原始 CCGM(1,3)		GM(GM(1,3)		NGM(1,3)		NGM(1,1,k)	
年份	数据	拟合值	APE(%)	拟合值	APE(%)	拟合值	APE(%)	拟合值	APE(%)
2000	100670.34	100670.34	\	100670.34	\	100670.34	\	100670.34	\
2001	105771.96	105285.62	0.46	86872.70	17.87	94706.98	10.46	67446.27	36.23
2002	116160.245	117375.49	1.05	162324.20	39.74	122654.06	5.59	102907.03	11.41
2003	138352.266	138353.04	0.00	207966.40	50.32	147184.27	6.38	132894.85	3.95
2004	161657.262	165307.48	2.26	239886.00	48.39	168471.07	4.22	158254.42	2.11
2005	189231.156	188332.69	0.48	259203.80	36.98	186512.89	1.44	179700.04	5.04
2006	207402.108	207374.69	0.01	270643.70	30.49	202266.47	2.48	197835.79	4.61
2007	225795.45	219507.23	2.79	271987.80	20.46	217405.31	3.72	213172.51	5.59
2008	229236.865	230568.31	0.58	274056.30	19.55	231681.70	1.07	226142.19	1.35
2009	240666.216	243007.77	0.97	281595.90	17.01	243439.82	1.15	237110.16	1.48
2010	249568.416	255769.98	2.49	288920.30	15.77	255062.29	2.20	246385.36	1.28
2011	271704.186	269364.90	0.86	297705.50	9.57	265930.38	2.13	254229.04	6.43
2012	275464.53	278876.75	1.24	303404.00	10.14	272957.08	0.91	260862.14	5.30
2013	280999.362	281484.51	0.17	302923.20	7.80	278080.34	1.04	266471.51	5.17
2014	281843.772	281829.32	0.01	297066.10	5.40	280304.02	0.55	271215.13	3.77
2015	276964.094	277182.25	0.08	288894.00	4.31	281049.63	1.48	275226.64	0.63
2016	274608.024	276344.45	0.63	281514.40	2.52	279296.90	1.71	278619.02	1.46
2017	276231.162	275609.27	0.23	278070.80	0.67	277674.10	0.52	281487.82	1.90
2018	278435.75	275731.56	0.97	275351.60	1.11	278223.48	0.08	283913.87	1.97
2019	281280.576	280690.80	0.21	277675.40	1.28	279875.73	0.50	285965.48	1.67
2020	283540.666	283613.05	0.03	276771.80	2.39	282049.99	0.53	287700.45	1.47
MRSPE			<u>0.77</u>		17.09		2.41		5.14
2021	293975.864	291739.432	0.76	274254.80	6.71	293968.37	0.00	289167.64	1.64
2022	302935.36	300471.87	0.81	270804.50	10.61	311660.03	2.88	290408.40	4.14
2023	316316.00	316242.08	0.02	279754.60	11.56	335850.35	6.18	291457.66	7.86
MRFPE			<u>0.53</u>		9.62		3.02		4.54
CMRPE			<u>0.74</u>		16.11		2.49		5.06

从表 2 的结果来看, CCGM(1,3)模型始终保持最低 误差,其三项综合指标(MRSPE、MRFPE、CMRPE)均小 于 1%,证明了模型能够较好地把握煤炭消费系统地动 态演化特征。整体而言,CCGM(1,3)模型在捕捉煤炭消 费系统动态演化特征方面表现最佳,模型的精准度和 鲁棒性显著优于对比模型,更适合用于煤炭消费系统 的高精度预测任务。

本文使用案例中求得的参数,对中国未来3年煤 炭消费量和碳排放量进行预测,预测结果见表3.

表3 中国未来3年煤炭消费量的预测值

年份	2024	2025	2026
预测值	379399.64	362300.97	389213.30

由表3可见,未来3年中国煤炭消费量呈现出的 "高位回升→小幅回落→再度回升"的波动格局,承 受经济波动与结构调整的双重影响,后续需加快清洁 能源替代和产业升级,才能真正实现煤炭消费的长期 下行。

4. 结论

本文系统性地分析了中国煤炭消费系统的动态演 化关系,基于煤炭消费量、碳排放量、人口和 GDP,建 立煤炭消费系统的微分方程,由微分方程和差分方程 的差异性信息原理,建立煤炭消费量的非线性灰色多 变量预测模型,采用分数阶累加生成方法对累加阶数 进行优化,最小二乘法求解参数,使用差分进化算法 优化超参数,并对中国煤炭消费量进行案例分析,并 对其发展趋势进行预测。预测结果表明,未来3年中 国煤炭消费量呈现出波动上升的趋势,该结果可为政 府在"双碳"背景下优化能源结构、推进煤炭行业绿 色转型提供量化依据。

参考文献

[1]周孝信. "双碳"目标下我国能源电力系统发展趋势研究——绿电替代+绿氢替代 [J]. 新经济导刊, 2023, (Z2): 32-7.

[2]邓聚龙. 灰色系统理论简介 [J]. 内蒙古电力, 1993, (03): 51-2.

[3]罗党,李良帅. 多变量时滞阻尼累加灰色模型及其应用 [J]. 控制与决策, 2024, 39(08): 2703-10.

[4] 叶莉莉,谢乃明,罗党.累积时滞非线性 ATNDGM(1,N) 模型构建及应用 [J]. 系统工程理论与实践, 2021, 41(09): 2414-27.

[5]石莹莹,朱锋,周陈裕, et al. 加权分数阶离散 Verhulst 模型及其应用 [J]. 数学的实践与认识, 2024, 54(03): 76-87.

[6]李惠,曾波,周文浩.基于灰色参数组合优化新模型的生活垃圾清运量预测研究 [J].中国管理科学,2022, 30(04):96-107.

[7]Liu L, Liu S, Yang Y, et al. A generalized grey model with symbolic regression algorithm and its application in predicting aircraft remaining useful life [J]. Engineering Applications of Artificial Intelligence, 2024, 136: 108986.

[8]Fronk C, Petzold L. Training stiff neural ordinary differential equations with explicit exponential integration methods[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2025, 35(3).

[9]田立新,高琳琳.利用微分方程建立煤炭消耗及碳排放量预测模型 [J].能源技术与管理,2012,(02): 161-4.

作者简介: 李嘉仪 (2001)、性别 女、民族汉、籍贯 四川绵阳、学历 本科、职称无、研究方向 复杂系统建模 与预测。